UV-induced proteolysis of RNA polymerase II is mediated by VCP/p97 segregase and timely orchestration by Cockayne syndrome B protein

نویسندگان

  • Jinshan He
  • Qianzheng Zhu
  • Gulzar Wani
  • Altaf A. Wani
چکیده

RNA polymerase II (RNAPII) acts as a damage sensor for transcription-coupled nucleotide excision repair (TC-NER) and undergoes proteolytic clearance from damaged chromatin by the ubiquitin-proteasome system (UPS). Here, we report that Valosin-containing protein (VCP)/p97, a druggable oncotarget, is essential for RNAPII's proteolytic clearance in mammalian cells. We show that inhibition of VCP/p97, or siRNA-mediated ablation of VCP/p97 and its cofactors UFD1 and UBXD7 severely impairs ultraviolet radiation (UVR)-induced RNAPII degradation. VCP/p97 interacts with RNAPII, and the interaction is enhanced by Cockayne syndrome B protein (CSB). However, the VCP/p97-mediated RNAPII proteolysis occurs independent of CSB. Surprisingly, CSB enhances UVR-induced RNAPII ubiquitination but delays its turnover. Additionally, VCP/p97-mediated RNAPII turnover occurs with and without Von Hippel-Lindau tumor suppressor protein (pVHL), a known substrate receptor of Elongin E3 ubiquitin ligase for RNAPII. Moreover, pVHL re-expression improves cell viability following UVR. Whereas, VCP/p97 inhibition decreases cell viability and enhances a low-dose UVR killing in presence of pVHL. These findings reveal a function of VCP/p97 segregase in UVR-induced RNAPII degradation in mammalian cells, and suggest a role of CSB in coordinating VCP/p97-mediated extraction of ubiquitinated RNAPII and CSB itself from chromatin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valosin-containing Protein (VCP)/p97 Segregase Mediates Proteolytic Processing of Cockayne Syndrome Group B (CSB) in Damaged Chromatin.

Cockayne syndrome group A and B (CSB) proteins act in transcription-coupled repair, a subpathway of nucleotide excision repair. Here we demonstrate that valosin-containing protein (VCP)/p97 segregase functions in ultraviolet radiation (UVR)-induced ubiquitin-mediated CSB degradation. We show that VCP/p97 inhibition and siRNA-mediated ablation of VCP/p97 and its cofactors UFD1 and UBXD7 impair C...

متن کامل

Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity

DNA damage recognition subunits such as DDB2 and XPC protect the human skin from ultraviolet (UV) light-induced genome instability and cancer, as demonstrated by the devastating inherited syndrome xeroderma pigmentosum. Here we show that the beneficial DNA repair response triggered by these two genome caretakers critically depends on a dynamic spatiotemporal regulation of their homeostasis. The...

متن کامل

UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells.

Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated ...

متن کامل

The role of ubiquitin-dependent segregase p97 (VCP or Cdc48) in chromatin dynamics after DNA double strand breaks

DNA double strand breaks (DSBs) are the most cytotoxic DNA lesions and, if not repaired, lead to chromosomal rearrangement, genomic instability and cell death. Cells have evolved a complex network of DNA repair and signalling molecules which promptly detect and repair DSBs, commonly known as the DNA damage response (DDR). The DDR is orchestrated by various post-translational modifications such ...

متن کامل

Rescue of arrested RNA polymerase II complexes.

In the past few months, several discoveries relating to the mechanism underlying transcription-coupled DNA repair (TCR) have been reported. These results make it timely to propose a hypothesis for how eukaryotic cells might deal with arrested RNA polymerase II (Pol II) complexes. In this model, the transcription-repair coupling factor Cockayne Syndrome B (or the yeast equivalent Rad26) uses DNA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017